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ABSTRACT 

Renews/ systems are symbolic dynamical systems originally introduced by 

Adler. If W is a finite set of words over a finite alphabet  A, then the re- 

news] system generated by W is the subehift X w C A z formed by bi-inflnite 

concatenations of words from W. Motivated by Adler 's  question of whether  

every irreducible shift of finite type is conjugate to a m e w s ]  system, we prove 

tha t  for evm7 sh/ft of finite type there is a renewal system having the  same 

entropy. We also show tha t  every shift of finite type can be approximated 

from above by renewal systems, and tha t  by placing finite-type constraints  on 

possible concatenations,  we obtain all soflc systems. 

1. In troduct ion  

Let A be a finite alphabet, and W c A* be a finite collection of words over A. 

Form the compact set Xw of A" consisting of all bi-infinlte sequences of symbols 

that can be factored as a hi-infinite product of words from W. Then Xw k clearly 
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invariant under the shift crw one symbol to the left. These symbolic dynamical 

systems were introduced by Adler, who called them renewal  sys tems  in analogy 

with renewal theory from probability. They can be described as the possible bi- 

infinite trips on a graph with one central node, and one loop for each word of 

W. Thus they are also called loops systems,  or flower a u t o m a t a  [BP]. This 

description shows that renewal systems are sofic. 

Adler's motivation was an approach to the shift equivalence problem of R. 

Williams. If it were true that every irreducible shift of finite type were topo- 

logically conjugate to a renewal system, the additional renewal structure would 

provide a tool with which to attack shift equivalence. Since every renewal system 

is forwardly transitive (see Lemma 3.1), the questions can be stated as follows. 

Adler's Problem: Is every irreducible shift of finite type topologically conjugate 

to a renewal system? 

This problem is still open. However, we show here that for every shift of finite 

type there is a renewal system having the same entropy. 

The paper is organized as follows. In §2 we discuss "sentences ~ that can be 

parsed into words from W, and show that the growth rate of the number of 

sentences of length n gives the topological entropy h(ow). We also describe 

some motivating examples, including one due to S. Williams of a sofic system 

that cannot be conjugate to any renewal system. In §3 we observe in Proposition 

3.1 that crv¢ is topologically transitive in each direction, and in Proposition 3.2 
that crw is topologically mixing if gcd(]w] : to E W) = 1. If cr is an irreducible 
shift of finite type, then in Theorem 3.3 we prove that for every • > 0 there 

is a renewal system ~w that is also a shift of finite type which factors onto o 

with h(crw) < h(~) + e. The proof of our main result Theorem 4.1 on entropy is 

contained in §4, where the main ingredients are the techniques from [L1] and [L2] 

for constructing nonnegative matrices with prescribed spectral radius, a result 

of Handelman [H] on integral bases for eventually nonnegative matrices, and a 

method for introducing controlled ambiguity into sets of words. Finally, in §5 

we show that if concatenations are constrained by a thfite-type condition, then 

all sofic systems can be obtained from such systems. 

The authors are grateful to Mike Keane for many fruitful discussions. In 

particular, his contribution to the proof of Theorem 4.1 was significant. This 

collaboration was a result of the Workshop on Ergodic Theory and Symbolic Dy- 

namics held in Seattle during the summer of 1989. The Workshop was supported 

by grants from the National Science Foundation, IBM, the Milliman Endowment, 

and the University of Washington. 
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2. W o r d s ,  S e n t e n c e s ,  a n d  P a r s i n g  

Let A be a finite alphabet,  and W c A* be a finite set of words over A. We 

call W a v o c a b u l a r y .  A s e n t e n c e  over W is a string s E A* that  has at least 

one factorisation, or parsing, into a concatenation of words from W. If each 

sentence has exactly one such parsing, then W is called u n i q u e l y  d e c i p h e r a b l e .  

Vocabularies obeying this condition are also called c o d e s  [BP]. 

For any word u E A*, we denote its length (i.e. the number of letters it 

contains) by Iv I. The empty word • has length 0. If s = wl . . . t0r  is a sentence 

over W, then its length is Is[ = It01[ + . . .  ÷ [wr[. Let an(W) denote the number 

of sentences of length n, where s0(W) = I since we consider • as a concatenation 

of 0 words from W. It is a well-known fact from automata  theory [BP] that  the 

sequence {8, (W)} obeys a finite-order recurrence relation. Thus the generating 

function 
o o  

s~(=) = ~ s.(w)=- 
n = O  

r=ional, ,ay p ~ ( = ) / ~ ( = ) .  The growth rate of stz(W) is then 1//~, where ~ is 
the smallest positive root  of ~ ( u ) .  The first result shows that  this growth rate 

is also the topological entropy of ow.  

LEMMA 2.1 : Let W C A* be a vocabulary, and ( Xw, ow ) be the correspond- 
/rig renewa/sTstem. I f  an(W) Js the number of sentences over W of length n, 
then 

h(ow) = ~ s u p  I log s.(W).  
rI, "-+ O0 n 

Proof: Let b,~(W) denote the number of blocks in A n that  can occur in the points 

of Xw.  By definition of entropy, 

h(ow)  = ~msup -1 log 5 , (W).  
n - - b O O  n 

Since, ~entence is an .Uowed block in Xw, clearly s.(W) < b.(W), so that 

~msup 1log s.(W) _< h ( ~ ) .  
n - - + O O  n 

On the other  hand, let L = maxw~w [w[. Since each block of length n must 

occur as a subblock of a sentence of length n ~- t for some | with 0 < l < 2L - 2, 

and there are l + 1 chokes for its position, we have tha t  

2L-2 
b.(W) <_ ~ (, + z)s.+,(w). 

I=0 
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Let a = ]imsupn_.oo(I/n ) log e.(W), and suppose • > 0. Then an(W) < e "(a+') 
for large enough n, so that 

Thus 

2 L - 2  

bn(W) < E (l + 1) c("+')("+') < (2L - 1)2e(~'--~)(a+')c "( '+ ' ) .  
I = 0  

h(aW) = ]im sup --1 log b.(W) < a + • 
n " *  OO n 

for all • > 0, so that h(~v ) < a. O 

We now give some motivational examples of these ideas. 

E~cample 2.2: Recall that a vocabulary is uniquely decipherable ff every sentence 

can be parsed uniquely into words from W. In this case Sw (u) has a simple ex- 

pression. Since each sentence ends in a unique word, 6,(W) obeys the recurrence 
relation 

L 

(2.1) sn(W) = E s . _ I . . , (W)=  E cks.-k(W). 
w ~ W  k = l  

where ck denotes the number of words in W of length k, and L = m a x ~ w  [tu[. 
Using the initial conditions 

(2.2) s.(W) = {: if n = 0, 
i f - L + l _ <  n <0 ,  

multiplying (2.1) by u n and summing over n >_ 1, we obtain that 

Thus 

Sw(u)  - 1 = cku k Sw(u) .  
" k = l  

1 1 
Sw(u) = 1 -  E~=I  ck uk = 1 -  E,p6W u['[" 

Since qw(u) = 1 -  Y~=I ck uk "* - c o  as u --* co, is decreasing in u, and 

qw (0) = 1, it follows that qw (u) has a unique positive root I /~.  Since the 

ck ~_ 0, a simple argument shows that 1/~ is the closest root to 0, so that 

the growth rate of s , (W),  which is h(aw) by Lemma 2.1, equals log ~. This 

satisfies the polynomial t/" - ~'~=1 cktL-k, so that ~ has no other positive Galois 

conjugates. This hnmediately shows that certain entropies log ~ cannot be the 

entropy of a uniquely decipherable renewal system, since certain A have positive 

Galois conjugates. One example is )t = (3 + V~)/2. [] 
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Our method of construction is to build vocabularies with certain mnbiguities, 

so that some sentences can be parsed in more than one way. The ambiguity will 

be controlled, so that Sw (u) can still be easily computed. The next example is 

a simple prototype of this method. 

Example 2.3: Let A = {a, b}, and W = (a, ab, ha}. Notice that the sentence aba 
has the two parsings a(ba) and (ab)a. Let $,  denote the collection of sentences 

of length n. Clearly 

Sn = $n-za V $,,-2ab V $,-2ba. 

However, each sentence ending in aba occurs twice in this union, once in $,-za 
and once in $,~-2ba. AH other sentences occur once. It follows that {an(W)} 
obeys the recurrence relation 

o . ( w )  = + 2 s . _ 2 ( w )  - 

where the important feature is the negative term resulting from the ambiguity. 

Using the initial conditions (2.2) with L = 3, we obtain as in Example 2.2 that 

the generating function is 

1 
S w  ( u )  = 1 - t, - 2~, ~ + u s "  

Here h(~w) = log A, where A -~ 1.80194 is a r o o t  o f t  s - t  2 - 2 t +  1, and 

has a Galois conjugate A2 - 0.44504 > 0. Thus even this small amount of 

ambiguity is enough to obtain renewal systems that cannot be conjugate to 
uniquely decipherable renewal systems. It is the introduction of such ambiguities 
that provides the flexibility to obtain all entropies. [] 

Example 2.4: (S. Williams [wD: Let X = {0, 1} x be the full 2-shift, and define 

a 2-block map ~b by 4{00) = ~b(11) = a, ,~(01) = b, and ~b(10) = c. The image 

,~(X) c {a, b, c} z is a sofic system, and S. Williams has shown by an argument 

using fixed points that this system cannot be topologically conjugate to any 

renewal system. 

S. Eenewa l  S y s t e m J  

Let W c A* be a vocabulary, and denote the associated renewal system by 

(Xw,~w). In this section we discuss the mixing properties of~w.  We also show 

that every irreducible shift of finite type is a factor of a renewal system with 
slightly higher entropy. 
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PROPOSITION 3.1:  Every reaewa/system is topologically transit/re in each 

d/rection. 

Proo£: This follows easily from the observation that  every sentence can both 

precede and follow every other sentence. [] 

PROPOSITION 3.2:  Let W be a vocabulary. / /gcd{lto I : to E W} = 1, then 

~rw is topologically mixing of al/orders. 

Proo£: This follows from the fact that  for n sufficiently large, there is a sentence 

over W of length n. [] 

Remark: The vocabulary W = {00,  01, 10, 11} shows that  the converse to Propo- 

sition 3.2 is false. 

The following shows that  shifts of finite type can at least be approximated by 

renewal systems. 

THEOREM 3.3 :  Let (X, ~) be an irreducible shift of I~rdte type. For every 

• > 0 there is a uniquely decipherable re.uewa/system (Xw,crw) that is a shift 

o[ finite type and a cont/nuous map ~b: X w  --* X such that u~b = ~b~w and 
< + , .  

Proof: First assume that  a is mixing. There is an alphabet B, and a sero-one 

matrix T indexed by B such that  (X, ~) ~ (XT, ~rT), where 

XT ---- {z = (~i) E B z : T~,¢,+~ -- I for i E Z}, 

and crT is the shift on XT. Since ¢r T is mixing, for all sufficiently large n we have 

that  (T~)~, > 0 for all ~,~ E B. Let Mn = max{(Tn)~, : ~,~ E B}. For each 

pair ~, ~ E B there is a map ~o~, from {1 , . . . ,  Mn} onto the set of blocks in XT 

of length n + 1 beginning with ~ and ending with r/. 

Form the alphabet A consisting of all triples (~, k, r), where ~ E B, 1 < k < n, 

and 1 _< r _ Mn. Construct the vocabulary W to contain all words of the form 

to ,, = 2, , ) . .  n , , ) .  

Thus W contains ]BIM,~ words of length n, and no others. Clearly W is uniquely 

decipherable. 
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Define an mblock map ~b: X w  "* XT as follows. If the n-block is a word 
to~,r E W, put ,~(t0e,r) = ~. If the n-block is a terminal segment of one word 

followed by an initial segment of another, then it has the form 

b --- (~, k, r)(~, k + 1, r ) . . .  (~, n, r)(R, 1, s)(R,2,8).- .  (~,k - 1,6). 

Let ~e, ,(r)  = f~2~s. . .  ~,T/, and then put ~b(b) = ~ .  The ~b defines a surjective 

shift-invariant map from X w  to XT. 

Since W is uniquely decipherable and all words in W have length n, we see 

that 

By Lemma 2.1, 

h(ow) = ~ log .k,,(W) = log IBI + log M,,. 

Noting that (1/, ,) log M,, - ,  h(<,T), the result follows. 
If (XT,o2") is irreducible with period p > I then there is a subset C c B such 

that for any ~, ~/E C we have that (Tnv)e, > 0 for all large enough n, while 

(T~P)~, = 0 if ~ E C and ~ ~ C. The construction then works as before, with 

C replacing B. [] 

4. En t rop ies  

In this section we prove our main result, that for every shift of finite type there 

is a renewal system having the same entropy. 

Ca]] an algebraic integer ~ a P e r r o n  n, l m b e r  if ~ ~_ 1 and ~ is strictly greater 

than the absolute value of its other Galois conjugates. Denote the set of Perron 

numbers by P. In iLl] it is shown that the entropies of mixing shifts of finite 
type are exactly the numbers log ~ for ~ E P. Call ~ weak  P e r r o n  if ~ ~_ [~[ 

for every Galois conjugate ),i of ~, or, equivalently, if ~k E P for some k: )_ 1. 

Then the entropies of general shifts of finite type are just the numbers log ~ with 

weak Perron. We will concentrate on the Perron case first, indicating briefly 

in the proof of Theorem 4.5 the modifications needed for the weak Perron case. 

THEOREM 4 . 1 :  Let ~ be a Perron number. Then there is a finite alpha- 

bet A and a vocabulary W c A*, such that the reaewa/system (Xw,ow)  is 

topologically mixing and has topo/ogica/entropy h(ow ) = log )~. 

We shall first prove a series of auxiliary results that will be used in the proof. 

Let A have degree d. We may assume that d > 2 since the theorem is trivial 
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for ~ E N. We will first describe our method for constructing polynomials with 

largest root ~. In Lemma 4.2 we apply this method to produce a class of such 

polynomials/B,n (t) indexed by n 6 N d with coefficients whose size and location 

obey certain inequalities. Lemma 4.3 is our device for controlling ambiguity, 

and Lemma 4.4 allows us to combine vocabularies over disjoint alphabets. By 

placing conditions on n and using these lemmas, we produce vocabularies W so 

that the recurrence relation obeyed by an(W) is "dominated ~ by/B,n( t ) .  The 

proof concludes by adding enough new words to W to form a new vocabulary W 
with 

1 

where m = deg/B,n, so that h(o~)  = log ~. 

Let C be the companion matrix of the minimal polynomial of A. Since deg I _> 

2, an eigenvector for A cannot be rational Hence by a result of Handelm~n [HI, 

there is an integral basis for Z d with respect to which C is eventually positive. 

Let B be the matrix of C in this basis, so that B n > 0 for large enough n. 

The method in ILl] of constructing aperiodic nonnegative integral matrices 

with spectral radius I can be described as follows. Suppose we find integral vec- 

tors s l  , . . . ,  sn in Z d, all with positive coordinate in the dominant eigendirection, 

and such that 
n 

(4.1) B s ,  = 
iffil 

where the m~y are nonnegative integers. Then M -- [m~-] has spectral radius ~. 

In fact, every nonnegative aperiodic integral matrix with spectral radius A arises 
in this fashion [L1, Thin. 2]. 

Since B is eventually positive, there is a simple way to generate the required 
integral vectors. Let e~- denote the j th  elementary colunm unit vector. Fix a 

d-tuple n ~- [n l , . . . ,  nd] E N d. We will require that n be large enough so that 

(4.2) 

We will aiso require that 

(4.3) 

for apexiodicity. 

0_< i_< n , . -  1. 
relations 

B n i > 0  for 1_< j_< d. 

g c d ( , h , . . . , , ~ )  = I 

Consider the integral vectors s~,i = B~ei for 1 _ j __ d and 

We write the images under B of these vectors by use of the 

Bs~,,- = B~+Xe~ • = s~+~,j- (0 _< i _< nj" - 2), 
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d d 
Bsn , _ l ,  j = Bn , .~  = ~ ( B n ' ) i , j p . i  = ~(Bn ' ) i , j~ to , i ,  

/=1 i----1 

where all the coefficients are nonnegative by (4.2). This produces a nonnegative 

integral matrix Ms,. .  of size [n[ = nl + . . .  + n d .  Strict positivity of the (Bn~)i,y 
shows that  Mv,n  is irreducible, and condition (4.3) shows that  Mv,n  is aperiodic. 

Using row eliminations, the determinant defining the characteristic polynomial 

of Mv,n can be reduced to the d-dimensional determinant 

fB,n (t) : det[(t  n '  I - B n*)el , .  . . ,  (t n '  I - Bn')e~],  

where I is the d × d identity matrix. 

To obtain a more compact description o f /v ,n ( t ) ,  put  (tl) n = It "z I , . . . ,  t '~ I], 

B n = [ B " ' , . . . ,  B'~4], both having size d × d 2, and let 

T T H = l i d =  [ e l e T , . . . , e d e d ]  , 

T is the j t h  elementary row vector. Thus H is d ~ x d. Then ( t I )nH = where e i 
diag[t "z, . . . , tnd] ,  and B n H  = [Bnze l , . . . ,Bn4ed] .  Thus 

fz ,n( t )  = d e t [ ( t I ) a Z  - B ° H ] .  

Suppose that  M = [m/y] is a d × d matrix. If J C { 1 , . . . , d ) ,  let M ( J )  
denote the determinant of the principal submatrix [m/y]i,y~j. If n E N d, and 

J = {Yl,---,3,'}, let n j  = [ny , , . . . , n j . ] .  When J ---- ~ we put M(~) = 1 and 

]no] = O. Expansion of the determinant shows that  

de t [ ( t I )nH - M] = ~ ( - 1 ) l J l M ( J ) t  [nl- l ' ' f ,  
Jc{1 ..... d} 

where the sum is taken over all subsets J of {1 , . . . ,  d}, including J = ~. 

The following lemma shows that  for every principal submatrix of B u l l  of size 

_> 2, the product of the diagonal terms dominates the determinant. 

LEMMA 4.2:  Let 6 > O. Then there is an N ( B ,  6) such that  if  min(n) _ 

N(B,  6), then ~or every J c {X, . . . ,d}  wi~b IJI_ 2 we &ave 

(4.4) 6 II (B"H)i~. > [(BnH)(J)I. 
s'EY 
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Proo£: There is a simple motivating idea for this result. Let v be a positive 

eigenvector for B with eigenvaine A. Then there is a p < A and "U > 0 for 
1 < j <_ d such that BnJey = "yjA'~#v + O(p~#). Thus the entries in B n J H  

are all of order A n#, hut the columns are nearly collinear. Under expansion of 
the determinant ( B n H ) ( J ) ,  by multilinearity, each term involving two or more 
dominant factors "y/A'~v vanishes, and what is left has size o(AlnJI). 

Since the characteristic polynomial of B is the minimal polynomial of A, it is 

irreducible over Q, so that the eigenvalues A1 = A, A2, . . . ,  Ad are all simple. For 

each Ai, there is a corresponding eigenvector v i E C d. Since B is eventually 

positive, by the Perron-Frobenins theorem IS] we may assume that the entries 

of v = Vl are strictly positive. Let A = diag[A1,... Ad], and V = Iv1, . . .  ,Vd], so 
that  B V  = VA. Thus V - 1 B  = AV -1,  showing that the first row o f V  -x is a left 

eigenvector for B with eigenvalue A, so this row is positive since V V  -1 = I > O. 

The equation V V  -1 = I shows that 

d 

e i  = 

Let "Ty = (V-1)li, so ~/j > 0 by the above. This shows that the v-coordinates ~i 

of the e i form a left eigenvector for B with eigenvalue A, hence are all positive. 

Let p = max2<i<_d JAil. Then 

(4.5) B')ei  = Z ( V - 1 ) , y A ~ v ,  = ",/iA')v 4- O(p ,)) as n ---, co. 

From this it follows that if [JI ~ 2 and v = [Vl, . . . ,vd]  T, then 

(46) H(-'-);, = (H + 
iEJ " / E J  " 

On the other hand, expansion of ( B n H ) ( J )  be using (4.5) and multilinearity, 

and observing that any determinant with two columns that are multiples of v 

must vanish, we obtain that  

(4.7) I (B~H)(J)[  = o(Al' , l) .  

Comparison of (4.6) and (4.7) shows that (4.4) holds provided that min(n) is 

large enough. [] 
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The next lemms describes our mechanism for building ambiguity into s vo- 

cabulary. It is an elaboration of the ides in Example 2.3. 

LEMMA 4.3 :  Let n l , . . . , n~ ,  be dist;nct positive integer8 with nT > n x + " ' +  

nr-1, and let cx, . . . ,Cr be positive integers such that  2cx . . . cr -x  divides or. 

Then there is a vocabulary W such that  

1 -  E;=I CkU"h + 1(CLC 2 " "'¢r)t~ "''i''''+n'" 

Proof: For 1 _ k <_ r - 1  and 1 < i < ck introduce distinct symbols ak,i. Aug- 

ment these with additional distinct symbols bm with 1 _ m _ Cr/(2cl "'" or-x) 

to form am alphsbet A. Let W c A* be the vocabulary consisting of the words 

"~ (1 < k < r -  1,1 < i  < ok) ak,i 

and 
a~xa '~  " "an'-I r-t,~.-1 b~ "-(nl+'' '÷n'-l) , 

b " ' - ( " ~ + ' " + " ' - ~ )  a "~ ~ " '  " a ~ ' _ - 1 ~ , , _ ,  , m 1 , i l  ' ~ 2 , i 2  " 

where 1 _< ik _< ck for I _< k _< r -  1, and 1 _< m _ c r / (2Cl""c r -1 ) .  Thus W 

contains ck words of length nk for 1 < k < r, and no others. 

Let an(W) be the number of sentences of length n, where we put s0(W) = 1, 

and e,~ (W) = 0 for n < 0. If Sn denotes the collection of sentences of length n 

over W, then 

Sn = U $,,-i-i w- 
wEW 

As in Example 2.3, sentences ending in 

(4.8) nt . . . a n , - I  ~ n , - ( n t + . . . + n , - g ) ~ n l  . . . a n , - 1  
a t , i t  r - l , i r - lVm ~'l,jl r - l , j r - 1  

occur exactly twice in this union, while all other sentences occur once. There 

a r e  

1 
(~ ... ~,_~)(~,12~ ... ~,_~)(~ ... ~,_~1 = ~...~, 

words of the form (4.8). Thus . . ( W )  obeys the recurrence relation 

P 

s.(W) = E cksn-'~k(W)- 1 ~(~.. • ~ , . ) , . _< . ,+ . . .+ . .~  ( w )  
k = l  

(n ~ 1). 
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Multiplying this by u n, summing over n _> 0, and using the initial conditions 

shows that 

("  ) SW(u) 1 -  ~ cku '~" "+" 1(ci ""c,.)u n'+'''+n" 
k= l  

= 1 .  

[] 

The following result will allow us to apply Lemma 4.3 to to ny  for each subset 

J c {1, . . . ,  d} individually, and then compute the generating function for the 

combined vocabularies. 

LEMMA 4.4: Suppose that AI , . . . ,  Am are pairwise disjoint alphabets, tha~ 
W~ c A~ are vocabularies, and that the generating functions Sw, (u) all have the 
form 

1 
,5'w,(u) = 1 - Vi(U)" 

If W = W1 U ' . .  U W.~, then 

1 
s w ( u )  = 1 - r e { u )  . . . . .  

Proof." By induction it suffices to consider the case m = 2. Let W = W1 U 

W2. Since the alphabets are disjoint, each sentence in W* ends in a unique 

maximal subsentence from W1 or from W2. Let r,,(Wi) denote the number of 
such sentences of length n ending in a sentence from Wi. By convention, we put 

ro(Wi) = 1. Thus 

(4.9) sn(W) = 
rn(W1) + rn(W2) ,  

L r,~(W1) ÷ rn(W2) - I 

Removal of the maxima] subsentence shows that 

= 

if n> 1, 

ifn=O. 

(4.10) k=1 
n 

, n ( w 2 )  - -  

k = l  

Let S~,(u) -- Sw~(u)-  1 = pi(u) / (1-  pi(u)). Put P~(u) = ~ = 0  r,,(Wi)u". 

Multiplication of (4.10) by u" and summing over n _ 0 gives 

Sl(U) = R2(u)S;v, (u) + 1, 

P~(u) = R~(u)s~,(u) + 1. 
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Solving for the P~ and adding gives 

2 + s ~ , { u ) + s ; , ( u )  

Rl(u)+R2(u)= l_S~v,(u),.~v,(U ) 

By (4.9), the required generating function is 

~qW (u) ---- RI(U) -{- R2(u) -- 1 ----- 1 -}" ~V l (u) -P "qW;I (u) + ,.q~i (u)~/~ (u). 
1 - S~,, (u)S~, (u) 

Using the relations 8~,,(u) = p,(u)/0- p,(u)) and some manipulation, this 
reduces to 

1 sw(u) = 
1 - p1(u) - p2(u)" 

[] 

Proo£ol Theorem 4.1: We use the notation and assumptions of this section. Use 
B and n to form the polynomial 

fB,n(t)=det[(tI)"H-BnH] = ~ (-1)[I[cIt  lnl-ln~l, 
Ic{I ..... d} 

where c1 -- (BnH)(J). Abbreviate c{k} to ok, and note from equation (4.5) that 

(4.11) 

where "~k, v~ > 0. Assume that n is large enough so that (4.2) and (4.3) hold, 
and further that 

(4.12) n k > n 1 + - . . + n k - 1  for2_<k<_d 

This condition guarantees that all subsums Inll are distinct, and that we can 
apply Lemma 4.3 to ny. The exponential estimate (4.11) and Lemma 4.2 show 

nh > >  nl + . . .  + n~-i  we can find positive integers c~. I)- in- that by making 

dexed by J c {1, . . . ,  d) with [J[ > 2 and by 1 _< y" _< d meeting the following 
conditions. 
(i) e~ J) = 0 if j ¢ J .  

(ii) c~/)< 2-dcy. 
. . .  2 ~ , - 1  (I) (~) If J =  {j,, , j , } , then  11~=,~'. div~esc~', '~. 

(iv) (1/2)II;~1c~ I) > [~11- 
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For each J c {1 , . . . ,  d} with IJI _ 2, using conditions (4.12) and (iii), we may 

apply Lemma 4.3 to find an alphabet Ay and a vocabulary Wj c A~ such that  

1 
= 

1_ oI.,).., + (n , , ,  o / ) ) . , . . ,  
The alphabets A~, can be taken palrwise disjoint, so application of Lemma 4.4 

shows that  for W = Ulyl_> 2 Wj we have 

Sw( ) = I 

Noting from (4.12) that  the exponents Insl are pairwis¢ distinct, and using the 

estimates (ii) and (iv), we see that  

:c{1 ..... a} :c{1 ..... d} 

has nonnegative coefilcients r j  > O. For each d with Idl > 1 let A~ be an 

alphabet of rd letters distinct from all others and e a ~  other, and let W~ = 

{al",l : a E AS}. Since W~ is uniquely decipherable, 

1 
S w ; ( u )  = 1 - r:ul", l" 

Finally, let A = Uy(Aj  U AS) , and W = Uj(Wd UW~). Since the alphabets are 
disjoint, another application of Lemma 4.4 shows that  

1 
"~=w(U) = E J ' C { 1  ..... d}(--1) JcJUInJ[" 

Since A is the largest root of /B,n( t ) ,  1/A is the smallest root of SWw(u), proving 

that h(~w) = logA. [] 

The arguments here can easily be adapted to the weak Perron case. 

THEOREM 4 .5 :  Let A be a weak Perro. number. Then there is a renewal 
system having topological entropy log A. 

Proof: Since A is weak Perron, there is an integer p > 1 so that  A p E P. By 

Theorem 4.1, there is an alphabet A and a vocabulary W c A* so that  h(#w) = 
p log A. Define a monoid homomorphism lo : A* --* A* by ~o(a) = a p for a E A. 

Then 
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so the renewal system (X~{w),#~,(w)) has the required properties. [] 

5. M a r k o v  R e n e w a l  S y s t e m s  

As Example 4.2 shows, not every sofic system is conjugate to a renewal system. 

We will show, however, that  by introducing a finite-type constraint on the allowed 

concatenations of words, we can obtain all sofic systems. 

Let W c A* be a vocabulary, and let T be a sero-one matrix indexed by 

W. Let XT, W denote the set of z E A" that  can be written as . . .  to-ltoOWl'" 
with to~ E W and T,#,~,+~ = I for all i E l .  Then XT, w is invariant under the 

shift crT,w. Call (XT, w, #T,w ) a M a r k o v  r e n e w a l  s y s t e m .  When T~v = I for 

all v, w E W, this reduces to the renewal systems we have considered thus far. 

Every shift of finite type is trivially a Markov renewal system. 

PROPOSITION 5.1 : A subsbift is so~c if and only if i~ is topological/y conju- 

gate to a Markov renewa/system. 

Proof: Let W and T define a Markov renewal system (XT, w,~T,W). Replace 

each letter in each word of W by s new letter, so that  all letters are distinct, 

creating a new vocabulary W. It is clear that  (X~,T,cr~,T) is a shift of finite 

type, and that  it factors onto (XT,w,aT, w). Thus (X2",w,~T,w) is sofic. 

Conversely, suppose that  (X, ~) is sofic. It is well known that  (X, cr) is the 

image under a 2-block right resolving map of a shift of finite type (see, for 

instance, [BKM]). Thus there is a graph G -- (V, E) and a labelling l :  E -* L 

of its edges, so that  (X, ~) is conjugate to the sofic system Y c L z given by 
hi-infinite trips on the labelled graph. 

Number the vertices of G as V -- { /1 , . . .  , i t ) .  For 1 < /c  < r let Pk denote the 

set of words to of length k so that  there is a path labelled I# starting at vertex 

i~. The right resolving nature of the factor map means that  if to E P#¢, then the 

path labelled to starting at i~ is unique. Let 

r 

W =  U P h c L  *. 
k = l  

Define T to be the sero-one matrix indexed by W so that  T~,w = 1 if and 

only if the terminal vertex of v equals the initial vertex of w. Then clearly any 

concatenation of words from W subject to the constraint from T gives a labelled 

path on G. Conversely, every bi-lnflnite labelled path on G can be decomposed 

into such a concatenation. Thus Y = XT,w, concluding the proof. [] 
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Example  5.2: If this proof is carried out on Example 2.4 of a sofic system that  

is not conjugate to a renewal system, we obtain the following Markov renewal 

representation. 

c a  

[BP] 

[HI 

ILl] 

[L2] 

Is] 
[w] 
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