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ABSTRACT

Renewal systems are symbolic dynamical systems originally introduced by
Adler. If W is a finite set of words over a finite alphabet A, then the re-
newal system generated by W is the subshift X,, C A? formed by bi-infinite
concatenations of words from W. Motivated by Adler's question of whether
every irreducible shift of finite type is conjugate to a renewal system, we prove
that for every shift of finite type there is a renewal system having the same
entropy. We also show that every shift of finite type can be approximated
from above by renewal systems, and that by placing finite-type constraints on
possible concatenations, we obtain all sofic systems.

1. Introduction

Let A be a finite alphabet, and W C A* be a finite collection of words over A.
Form the compact set Xw of A* consisting of all bi-infinite sequences of symbols
that can be factored as a bi-infinite product of words from W. Then X is clearly
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invariant under the shift ow one symbol to the left. These symbolic dynamical
systems were introduced by Adler, who called them renewal systems in analogy
with renewal theory from probability. They can be described as the possible bi-
infinite trips on a graph with one central node, and one loop for each word of
W. Thus they are also called loope systems, or flower automata [BP]. This
description shows that renewal systems are sofic.

Adler’s motivation was an approach to the shift equivalence problem of R.
Williams. If it were true that every irreducible shift of finite type were topo-
logically conjugate to a renewal system, the additional renewal structure would
provide a tool with which to attack shift equivalence. Since every renewal system
is forwardly transitive (see Lemma 3.1), the questions can be stated as follows.

Adler’s Problem: Is every irreducible shift of finite type topologically conjugate
to a renewal system?

This problem is still open. However, we show here that for every shift of finite
type there is a renewal system having the same entropy.

The paper is organized as follows. In §2 we discuss “sentences” that can be
parsed into words from W, and show that the growth rate of the number of
sentences of length n gives the topological entropy h(ow). We also describe
some motivating examples, including one due to S. Williams of a sofic system
that cannot be conjugate to any renewal system. In §3 we observe in Proposition
3.1 that ow is topologically transitive in each direction, and in Proposition 3.2
that ow is topologically mixing if gcd{jw|: w € W} = 1. If 0 is an irreducible
shift of finite type, then in Theorem 3.3 we prove that for every ¢ > O there
is a renewal system o that is also a shift of finite type which factors onto o
with h(ow) < h(a) +&. The proof of our main result Theorem 4.1 on entropy is
contained in §4, where the main ingredients are the techniques from [L1] and [L2]
for constructing nonnegative matrices with prescribed spectral radius, a result
of Handelman [H] on integral bases for eventually nonnegative matrices, and a
method for introducing controlled ambiguity into sets of words. Finally, in §5
we show that if concatenations are constrained by a finite-type condition, then
all sofic systems can be obtained from such systems.

The authors are grateful to Mike Keane for many fruitful discussions. In
particular, his contribution to the proof of Theorem 4.1 was significant. This
collaboration was a result of the Workshop on Ergodic Theory and Symbolic Dy-
namics held in Seattle during the summer of 1989. The Workshop was supported
by grants from the National Science Foundation, IBM, the Milliman Endowment,
and the University of Washington.
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2. Words, Sentences, and Parsing

Let A be a finite alphabet, and W C A* be a finite set of words over 4. We
call W a vocabulary. A sentence over W is a string s € A* that has at least
one factorisation, or parsing, into a concatenation of words from W. If each
sentence has exactly one such parsing, then W is called uniquely decipherable.
Vocabularies obeying this condition are also called codes [BP].

For any word v € A*, we denote its length (i.e. the number of letters it
contains) by |v|. The empty word & has length 0. If s = w, - - - w, is a sentence
over W, then its length is |s| = |w;|+ -+ + |w,|. Let s,(W) denote the number
of sentences of length n, where so(W) = 1 since we consider ¢ as a concatenation
of 0 words from W. It is a well-known fact from automata theory [BP] that the
sequence {s, (W)} obeys a finite-order recurrence relation. Thus the generating

function
o0

Sw(u) = Z sn(W)u"

n=0
is rational, say pw (u)/gw (u). The growth rate of s, (W) is then 1/A, where A is
the smallest positive root of gw (u). The first result shows that this growth rate
is also the topological entropy of oy .

LEMMA 2.1: Let W C A* be a vocabulary, and (Xw,ow) be the correspond-
ing renewal system. If s,,(W) is the number of sentences over W of length n,
then

h{ow) = limsup%log 3n (W).

n—o0

Proof: Let b, (W) denote the number of blocks in A™ that can occur in the points
of Xw. By definition of entropy,

h(ow) = lim sup -'1;- log b, (W).
Since a sentence is an allowed block in X, clearly s,(W) < b,(W), so that
li.msup-’l:log 3n(W) < h(ow).

On the other hand, let L = maxyew |w|. Since each block of length n must
occur as a subblock of a sentence of length n + [ for some I with 0 <1< 2L -2,
and there are { + 1 choices for its position, we have that

2L-2

ba(W) S 3 (14 Donp(W).
=0
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Let a = limsup,,_, o, (1/n) log s (W), and suppose € > 0. Then s, (W) < e™(o+¢)
for large enough n, so that

aL-3
b,.(W) < E (l + l)c("+')(°+') < (2L _ 1)25(21‘—2)(“"")0“('”").
=0
Thus 1
h(ow) =limsup—log by (W) <a+e
n—oo N
for all € > 0, so that h(ow) < a. 0

We now give some motivational examples of these ideas.

Example 2.2: Recall that a vocabulary is uniquely decipherable if every sentence
can be parsed uniquely into words from W. In this case Sy (u) has a simple ex-
pression. Since each sentence ends in a unique word, s, (W) obeys the recurrence
relation

L
(2.1) (W)= sn_ju}(W) =D _ cxsn_s(W),
k=1

wEW

where ¢ denotes the number of words in W of length k, and L = max,ew |w|.
Using the initial conditions

(22) onl) = {

multiplying (2.1) by u" and summing over n > 1, we obtain that

Swlu)—1= (ZL: c,,u") Sw (u).

k=1

1 ifn=0,
0 f-L+1<n<0,

Thus
1 1

1-Tiaavt 1= Yeew !

Since gw(u) = 1 - Zf=1 cru* — —oo0 a8 u — oo, is decreasing in u, and

gw (0) = 1, it follows that gw (u) has a unique positive root 1/A. Since the
¢k > 0, a simple argument shows that 1/A is the closest root to 0, so that
the growth rate of s, (W), which is h(ow) by Lemma 2.1, equals log A. This A
satisfies the polynomial ¢t~ — Zf=1 cxtl—*, so that A has no other positive Galois
conjugates. This immediately shows that certain entropies log A cannot be the

SW (u) =

entropy of a uniquely decipherable renewal system, since certain A have positive
Galois conjugates. One example is A = (3 + v/5)/2. O
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Our method of construction is to build vocabularies with certain ambiguities,
so that some sentences can be parsed in more than one way. The ambiguity will
be controlled, so that Sy () can still be easily computed. The next example is
a simple prototype of this method.

Example 2.3: Let A= {a,b}, and W = {a,ab, ba}. Notice that the sentence aba
has the two parsings a(ba) and (ab)a. Let S, denote the collection of sentences
of length n. Clearly

Sp = Sp—1aU S, _2ab U S,._gba.

However, each sentence ending in aba occurs twice in this union, once in S,,-1a
and once in §,-gba. All other sentences occur once. It follows that {s,(W)}
obeys the recurrence relation

8”(W) = 8,._.1(W) + 28n_2(W) - a,._s(W),

where the important feature is the negative term resulting from the ambiguity.
Using the initial conditions (2.2) with L = 3, we obtain as in Example 2.2 that
the generating function is

1
1—u—2u2+ud

Sw(u) =

Here h(ow) = log A, where A = 1.80194 is a root of ¢t3 — ¢t2 — 2t + 1, and
has a Galois conjugate Az = 0.44504 > 0. Thus even this small amount of
ambiguity is enough to obtain renewal systems that cannot be conjugate to
uniquely decipherable renewal systems. It is the introduction of such ambiguities
that provides the flexibility to obtair all entropies. a

Example 2.4: (S. Williams [W]): Let X = {0,1}* be the full 2-shift, and define
a 2-block map % by ¥(00) = ¥(11) = @, $(01) = b, and ¥(10) = c. The image
¥(X) c {a,b,c}* is a sofic system, and S. Williams has shown by an argument
using fixed points that this system cannot be topologically conjugate to any
renewal system.

3. Renewal Systems

Let W C A* be a vocabulary, and denote the associated remewal system by
(Xw,ow). In this section we discuss the mixing properties of ow. We also show
that every irreducible shift of finite type is a factor of a renewal system with
slightly higher entropy.
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PROPOSITION 3.1: Every renewal system is topologically transitive in each
direction.

Proof: This follows easily from the observation that every sentence can both
precede and follow every other sentence. O

PROPOSITION 3.2: Let W be a vocabulary. If ged{|w|: w € W} = 1, then
ow is topologically mixing of all orders.

Proof: This follows from the fact that for n sufficiently large, there is a sentence
over W of length n. O

Remark: The vocabulary W = {00, 01, 10, 11} shows that the converse to Propo-
sition 3.2 is false.

The following shows that shifts of finite type can at least be approximated by
renewal systems.

THEOREM 3.3: Let (X,0) be an irreducible shift of finite type. For every
€ > 0 there is a uniquely decipherable renewal system (Xw,ow) that is a shift
of finite type and a continuous map ¢: Xw — X such that oy = Yow and
h(ow) < h(o) + .

Proof: First assume that o is mixing. There is an alphabet B, and a zero-one
matrix T indexed by B such that (X, o) = (X1, 07), where

Xr= {z = (f.) € B*: Te'.e'._ﬂ =1fort € Z},

and o is the shift on Xr. Since o7 is mixing, for all sufficiently large n we have
that (T")¢, > O for all ¢, € B. Let M,, = max{(T™")¢, : £,n € B}. For each
pair £,n € B there is a map pg¢, from {1,..., M, } onto the set of blocks in X7
of length n + 1 beginning with £ and ending with #.

Form the alphabet A consisting of all triples (£, k,r), where { € B, 1< k < n,
and 1 < r < M,,. Construct the vocabulary W to contain all words of the form

We,r = (f’ 1, r)(&x 2, r) T (f, n, 7')-

Thus W contains |B|M,, words of length n, and no others. Clearly W is uniquely
decipherable.
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Define an n-block map ¢: Xw — Xz as follows. If the n-block is a word
we,r € W, put Y(we,,) = €. If the n-block is a terminal segment of one word
followed by an initial segment of another, then it has the form

b= (& kr)(& k+1,r)---(&n,r)(n,1,8)(n,2,8)-- - (n,k —1,8).

Let e pn(r) = €625 ... Enn, and then put y¥(b) = €. The ¢ defines a surjective
shift-invariant map from Xw to Xr.
Since W is uniquely decipherable and all words in W have length n, we see
that
sun(W) = an (W) = (|B|Ma)*.

By Lemma 2.1,

1 1 1
h(ow) = E‘IOS skn(W) = =~ log |B|+ =~ log M,.

Noting that (1/n)log M, — h(or), the result follows.

If (Xr,or) is irreducible with period p > 1 then there is a subset C C B such
that for any £,n € C we have that (T"P)¢, > O for all large enough n, while
(T"P)ey, =01if £ € C and n ¢ C. The construction then works as before, with
C replacing B. 0

4. Entropies

In this section we prove our main result, that for every shift of finite type there
is a renewal system having the same entropy.

Call an algebraic integer A a Perron number if A > 1 and X is strictly greater
than the absolute value of its other Galois conjugates. Denote the set of Perron
numbers by P. In [L1] it is8 shown that the entropies of mixing shifts of finite
type are exactly the numbers log A for A € P. Call A weak Perron if A > ||
for every Galois conjugate \; of A, or, equivalently, if A* € P for some k > 1.
Then the entropies of general shifts of finite type are just the numbers log A with
A weak Perron. We will concentrate on the Perron case first, indicating briefly
in the proof of Theorem 4.5 the modifications needed for the weak Perron case.

THEOREM 4.1: Let A be a Perron number. Then there is a finite alpha-
bet A and a vocabulary W C A*, such that the renewal system (Xw,ow) is
topologically mixing and has topological entropy h{ow) = log A.

We shall first prove a series of auxiliary results that will be used in the proof.
Let A have degree d. We may assume that d > 2 since the theorem is trivial
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for A € N. We will first describe our method for constructing polynomials with
largest root A. In Lemma 4.2 we apply this method to produce a class of such
polynomials fg n(t) indexed by n € N? with coeficients whose sise and location
obey certain inequalities. Lemma 4.3 is our device for controlling ambiguity,
and Lemma 4.4 allows us to combine vocabularies over disjoint alphabets. By
placing conditions on n and using these lemmas, we produce vocabularies W so
that the recurrence relation obeyed by s,(W) is “dominated”® by fpn(t). The
proof concludes by adding enough new words to W to form a new vocabulary W

with
1

u™ fp n(1/u)’
where m = deg fp n, 80 that h(oyr) = log A
Let C be the companion matrix of the minimal polynomial of A. Since deg A >

Sr(w) =

2, an eigenvector for A cannot be rational. Hence by a result of Handelman [H],
there is an integral basis for Z¢ with respect to which C is eventually positive.
Let B be the matrix of C in this basis, so that B™ > 0 for large enough n.

The method in [L1] of constructing aperiodic nonnegative integral matrices
with spectral radius A can be described as follows. Suppose we find integral vec-

tors 81,...,5, in Z9, all with positive coordinate in the dominant eigendirection,
and such that
n
(4.1) Bgx; = Zm.-,-z‘-,
=1

where the m;; are nonnegative integers. Then M = [m;,] has spectral radius A.
In fact, every nonnegative aperiodic integral matrix with spectral radius A arises
in this fashion [L1, Thm. 2].

Since B is eventually positive, there is a simple way to generate the required
integral vectors. Let e; denote the jth elementary column unit vector. Fix a
d-tuple n = [ny,...,n4] € N%. We will require that n be large enough so that

(4.2) B" >0 for1<j<d.
We will also require that
(4.3) ged{ny,...,nq} =1

for aperiodicity. Consider the integral vectors x; ; = B"e,- for 1 <5 <dand
0 <1< ny—1. We write the images under B of these vectors by use of the
relations

Bsi;j=B*'ej=1%41; (0<i<n;-2),
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d d
Bsn,_1;=B"ie;j =) (B™); e; = (B™); %0,
=1 i=1

where all the coefficients are nonnegative by (4.2). This produces a nonnegative
integral matrix Mp , of sise [n| = ny + - - - + nq. Strict positivity of the (B"/); ;
shows that Mp , is irreducible, and condition (4.3) shows that Mp ,, is aperiodic.

Using row eliminations, the determinant defining the characteristic polynomial
of Mp n can be reduced to the d-dimensional determinant

fB,n(t) = det[(tnll — B™)e,y,..., (t"‘I - B”‘)ed],

where I is the d X d identity matrix.
To obtain a more compact description of fp n(t), put (¢1)® = [t™ ,...,t"¢ 1},
B® = [B™, ..., B™|, both having size d X d?, and let

H=H;= [elef, . .,edef]T,

where e] is the jth elementary row vector. Thus H is d? x d. Then (tI)*H =
diagt™,...,t"¢|, and B"H = [B"‘el, ceey B"‘ed]. Thus

f8,n(t) = det[(t])*H — B"H).

Suppose that M = [my;] is a d x d matrix. If J C {1,...,d}, let M(J)
denote the determinant of the principal submatrix [m;;f;i jes. If n € N?, and
J = {s1,---,5r}, let n; = [nj,,...,n;,]. When J = § we put M(8) = 1 and
|ng| = 0. Expansion of the determinant shows that

det[(t)"H - M) = > (-n)IM(gytlel=Insl,
Jciy,...,d}

where the sum is taken over all subsets J of {1,...,d}, including J = 8.
The following lemma shows that for every principal submatrix of B® H of sige
> 2, the product of the diagonal terms dominates the determinant.

LEMMA 4.2: Let § > 0. Then there is an N(B,6) such that if min(n) >
N(B, 6), then for every J C {1,...,d} with |J| > 2 we have

(44) § I (BH);; > |(B*H)(J)!.
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Proof: There is a simple motivating idea for this result. Let v be a positive
eigenvector for B with eigenvalue A. Then there is a p < A and v; > O for
1 < 7 < d such that B"ie; = ;A" v + O(p™/). Thus the entries in B" H
are all of order A™/, but the columns are nearly collinear. Under expansion of
the determinant (B™ H)(J), by multilinearity, each term involving two or more
dominant factors 4;A™iv vanishes, and what is left has size o(AI241).

Since the characteristic polynomial of B is the minimal polynomial of A, it is
irreducible over Q, so that the eigenvalues A; = A, Ag,..., Aq4 are all simple. For
each );, there is a corresponding eigenvector v; € C%. Since B is eventually
positive, by the Perron-Frobenius theorem [S| we may assume that the entries
of v =V, are strictly positive. Let A = diag|[A;,... ), and V = [vy,..., V4], 80
that BV = VA. Thus V~!B = AV !, showing that the first row of V! is a left
eigenvector for B with eigenvalue A, so this row is positive since V¥V~ =71> 0.
The equation VV ! = I shows that

d
& = Z(V"l),-,-v,-,
=1

Let v; = (V~1)1;, 80 45 > 0 by the above. This shows that the v-coordinates ;
of the e, form a left eigenvector for B with eigenvalue A, hence are all positive.
Let p = max<;<d|Aj|- Then

d
(4.5) B"e; = Z(V_l),'jA?V,' =LAV + 0(p"’) as n — 00.
i=1
From this it follows that if [J| > 2 and v = [vy, ..., v4|T, then
(4 1855 = (T 20 )42+ o=,
jEJ jE€JT

On the other hand, expansion of (B®H)(J) be using (4.5) and multilinearity,
and observing that any determinant with two columns that are multiples of v
must vanish, we obtain that

(4.7) (B> H){(J)| = o(Al=1).

Comparison of (4.8) and (4.7) shows that (4.4) holds provided that min(n) is
large enough. a
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The next lemma describes our mechanism for building ambiguity into a vo-
cabulary. It is an elaboration of the idea in Example 2.3.

LEMMA 4.3: Let n;,...,n, be distinct positive integers with n, > ny + - -+
n,.1, and let ¢1,...,¢, be positive integers such that 2¢, ---c,—; divides c,.
Then there is a vocabulary W such that

1
1 - E;:l Cku"h + %(Clcz ees Cr)u"1+"'+n' .

Sw(u) =

Proof: For 1 < k < r—1 and 1 < ¢ < ¢ introduce distinct symbols ax ;. Aug-
ment these with additional distinct symbols b,, with 1 < m < ¢,/(2¢1 - ¢r—1)
to form an alphabet A. Let W C A* be the vocabulary consisting of the words

apt (1<k<r—1,1<i<c)

and
ny .nz Ry n,—(n1+-- +nr-1)
al il 62 ‘.’ af—l,t,-..; bm
ne—(nitetn,_y) e oma o
b ,an,u a,_ 18,17

where 1<t <cpfor 1<k<r-1and 1<m<c¢ /(21 -cr—1). Thus W
contains cx words of length ny for 1 < k <'r, and no others.

Let s, (W) be the number of sentences of length n, where we put so(W) = 1,
and s,(W) = 0 for n < 0. If §,, denotes the collection of sentences of length n

over W, then
S = U Sn—|wjw.
wEW

As in Example 2.3, sentences ending in

. afr—1 ne—(ni+--+ne-1) M . . Nr-1
(4'8) al,u a"'l.t,_ b ‘ T )al,Jl *a '1,1,_

occur exactly twice in this union, while all other sentences occur once. There
are

1
(cl ) .c'_l)(cr/zcl .o .cf—l)(cl .o .c'_l) = Ecl .o .cr

words of the form (4.8). Thus s,,(W) obeys the recurrence relation

8 (W) = Z Ck3n—n, (W) — %(cl *+Cr)8n—(nyt-4n,) (W) (n21).
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Multiplying this by u™, summing over n > 0, and using the initial conditions
shows that

r
S (1= Y enu + Jler - eJurrtne) =1,
k=1 2

O

The following result will allow us to apply Lemma 4.3 to to n; for each subset

J c {1,...,d} individually, and then compute the generating function for the
combined vocabularies.

LEMMA 4.4: Suppose that A,,..., A, are pairwise disjoint alphabets, that
W; C A} are vocabularies, and that the generating functions Sw,(u) all have the
form

1
= T
EW =W, U---UW,, then
1
S\ = .
Ll P o P 7

Proof: By induction it suffices to consider the case m = 2. Let W = W, U
W,. Since the alphabets are disjoint, each sentence in W* ends in a unique
maximal subsentence from W; or from W;. Let r,(W;) denote the number of
such sentences of length n ending in a sentence from W;. By convention, we put
ro(W;) = 1. Thus

_ ru(Wl) + T“(Wg), fn2>1,
sl (W)= {"B(Wl) +ra(W3) -1 ifn=0.

Removal of the maximal subsentence shows that

ra(W1) = z": Tn—k(W3)sk(W1),
k=1

fn(Wg) = i r,,_k(Wl)a,,(Wg).

k=1

Let Sy, (u) = Swi(u) = 1 = pi(u)/(1 - pi(u)). Put Ri(s) = 20 ra(Ws)u™.
Multiplication of (4.10) by 4" and summing over n > 0 gives

(4.10)

Ry (u) = Ra(u)Sy, (v) + 1,
Rz(u) = Ri(u) Sy, (w) + 1.
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Solving for the R; and adding gives

2+ Sy, (4) + Si, (v)
1- Sy, (u) Sy, (w)

By (4.9), the required generating function is

Ry(u) + Ra(u) =

_1+ Sw, (u) + Sw, (4) + Si, (v)Sw, (“)
1- Sy, (v)Sy, (u)

Using the relations Sy (v) = pi(4)/(1 — p;(u)) and some manipulation, this
reduces to

Sw (u) = Ry(u) + Ry(u) -

1

S ) = I = pa()”

0

Proof of Theorem 4.1: We use the notation and assumptions of this section. Use
B and n to form the polynomial

foa(t) = det[(tN*H - B*H] = 3 (~1)Vicdinl=1nsl,
Jc{1,...,d}

where c; = (B®H)(J). Abbreviate c(} to ck, and note from equation (4.5) that
(4.11) ek = (Tevr)A™ + o(A™*),

where 7, vx > 0. Assume that n is large enough so that (4.2) and (4.3) hold,
and further that

(4.12) ng>ni 4+ -4ne—y for2<k<d

This condition guarantees that all subsums |n;| are distinct, and that we can
apply Lemma 4.3 to n;. The exponential estimate (4.11) and Lemma 4.2 show
that by making nx >> n; + - + nx_; we can find positive integers c( ) in-
dexed by J C {1,...,d} with |J| > 2 and by 1 < 5 < d meeting the followmg
conditions.

@) N =oifj¢J.

(i) ¢/ < 274,
(ii) ¥ J = {s1,...,5}, then 2]];_ 1"( 7) divides c( 7)
() (1/2) Tjes e > lel-



62 J. GOLDBERGER ET AL. Isr. J. Math.

For each J C {1,...,d} with |J| > 2, using conditions (4.12) and (iii), we may
apply Lemma 4.3 to find an alphabet A; and a vocabulary W; C A% such that

1
N ons J nyl
1-Yier "5‘ Yuns +%(Hje}°§’ ))"I L

The alphabets A; can be taken pairwise disjoint, so application of Lemma 4.4
shows that for W = |, 5,5, Ws we have

Sw, (u') =

1
7 . N onrt’
1=30 15122 E,-ejcg- Yuns +E|J|22%(H,‘e.r Cg- ))“' sl

Noting from (4.12) that the exponents [n;| are pairwise distinct, and using the
estimates (ii) and (iv), we see that

Sw(u)_" - E (—l)lllc_;u'“"l = Z r;uln"l

JC{1,...,d} Ic{1,...,d}

Sw (u) =

has nonnegative coefficients r; > 0. For each J with |J| > 1 let A, be an

alphabet of ry letters distinct from all others and each other, and let W} =
{al®’!: a € A';}. Since WY is uniquely decipherable,

1
Swi(v) = T

Finally, let A = J,;(4;U A}), and W = |J,;(W; UWY). Since the alphabets are
disjoint, another application of Lemma 4.4 shows that
1
EJc{l,...,d}(—l)J"J"ln’l ‘
Since A is the largest root of fz n(t), 1/X is the smallest root of Szr(u), proving
that h(ow) = log A. O
The arguments here can easily be adapted to the weak Perron case.

Siplu) =

THEOREM 4.5: Let A be a weak Perron number. Then there is a renewal
system having topological entropy log A.

Proof: Since A is weak Perron, there is an integer p > 1 so that A? € P. By
Theorem 4.1, there is an alphabet A and a vocabulary W C A* so that h(ow) =
plog A. Define a monoid homomorphism ¢ : A* — A* by p(a) = a? for a € A.
Then

1
Mowm) = - hlow) =log,
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so the renewal system (X, (w), 0, (w)) has the required properties. a

5. Markov Renewal Systems

As Example 4.2 shows, not every sofic system is conjugate to a renewal system.
We will show, however, that by introducing a finite-type constraint on the allowed
concatenations of words, we can obtain all sofic systems.

Let W C A* be a vocabulary, and let T be a sero-one matrix indexed by
W. Let X7 w denote the set of z € A* that can be written as - -- w_jwowy - -
with w; € W and Ty,w,,, = 1 for all 1 € Z. Then X7 w is invariant under the
shift o w. Call (X w,or,w) a Markov renewal system. When T,,, = 1 for
all v,w € W, this reduces to the renewal systems we have considered thus far.
Every shift of finite type is trivially a Markov renewal system.

PROPOSITION 5.1: A subshift is sofic if and only if it is topologically conju-
gate to a Markov renewal system.

Proof: Let W and T define a Markov renewal system (Xr,w,or,w). Replace
each letter in each word of W by a new letter, so that all letters are distinct,
creating a new vocabulary W. It is clear that (XW.T’UW,T) is a shift of finite
type, and that it factors onto (Xr,w,or,w). Thus (Xrw,or,w) is sofic.

Conversely, suppose that (X, o) is sofic. It is well known that (X, o) is the
image under a 2-block right resolving map of a shift of finite type (see, for
instance, [BKM]). Thus there is a graph G = (V, E) and a labelling  : E — L
of its edges, so that (X, o) is conjugate to the sofic system Y C L* given by
bi-infinite trips on the labelled graph.

Number the vertices of G as V = {11,...,1,}. For 1 < k < r let P; denote the
set of words w of length k so that there iz a path labelled w starting at vertex
k. The right resolving nature of the factor map means that if w € Py, then the
path labelled w starting at 1 is unique. Let

r
w=|J P cL
k=1

Define T to be the sero-one matrix indexed by W so that T,, = 1 if and
only if the terminal vertex of v equals the initial vertex of w. Then clearly any
concatenation of words from W subject to the constraint from T gives a labelled
path on G. Conversely, every bi-infinite labelled path on G can be decomposed
into such a concatenation. Thus Y = Xz w, concluding the proof. 0O
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Example 5.2: If this proof is carried out on Example 2.4 of a sofic system that
is not conjugate to a renewal system, we obtain the following Markov renewal
representation.
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